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A Method of Genetic Algorithm Based
Multiobjective Optimization via Cooperative Coevolution

Jongsoo Lee*, Doyoung Kim
School of Mechanical Engineering, Yonsei University,
Seoul 120-749, Korea

The paper deals with the identification of Pareto optimal solutions using GA based coevolu-

tion in the context of multiobjective optimization. Coevolution is a genetic process by which

several species work with different types of individuals in parallel. The concept of cooperative

coevolution is adopted to compensate for each of single objective optimal solutions during

genetic evolution. The present study explores the GA based coevolution, and develops pre-

scribed and adaptive scheduling schemes to reflect design characteristics among single objective

optimization. In the paper, non-dominated Pareto optimal solutions are obtained by controlling

scheduling schemes and comparing each of single objective optimal solutions. The proposed

strategies are subsequently applied to a three-bar planar truss design and an energy preserving

flywheel design to support proposed strategies.
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Penalty on Difference

1. Introduction

Genetic algorithm (GA) and its enhanced ver-
sions have received recent considerable attention
in areas of engineering design and optimization
(Lee, 1996 ; Le Riche et al., 1993 ; Windhorst et
al., 2004). GA has been shown to be effective when
the analysis model is inherently nonlinear and
the design problem is represented by a mixture of
continuous, integer and/or discrete design vari-
ables (Hajela et al., 1995 ; Saxena, 2005 ; Vigdergauz,
2001). GA has the higher probability of locating
a global optimum without evaluating derivative
based sensitivity information. GA works through
the evolution of multiple designs under the im-
plicit parallelism. Biologically inspired operations
of crossover and mutation facilitate to produce
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competitive genes during genetic evolution. Such
mechanisms in GA improve the current level of
the system performance, and eventually allow to
obtain the near-global optimum state of the sys-
tem under the given parameter environments. The
distinct features of genetic algorithm draw upon
diversity, discovery and adaptation. In GA, the
system is adapted toward the maximum perform-
ance by discovering the new competitive genes
among the diverse individuals. Among its fea-
tures, the diversity would be recognized in a case
where the multiple local optima are necessary to
search, especially in the context of multi-criterion
and/or multi-objective optimization.
Multi-objective optimization methods have been
widely studied in order to resolve the demand
such that the practical engineering design prob-
lems often require a number of design objectives
that are purposely conflicted among them. Pareto
optimization can be stated as the problem of de-
termining an optimal solution based on multiple,
possibly competing criteria. The solution to a
multi-objective problem is, as a rule, not a par-
ticular value, but a set of values of decision vari-
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ables such that, for each element in this set, none
of the objective functions can be further increased
without a decrease of some of the remaining ob-
jective functions, i.e., every such value of a deci-
sion variable is referred to as PARETO-OPTI-
MAL (Mason et al., 1998). Pareto optimal solu-
tions have also been termed non-dominated. This
name arises from the fact that no other solution is
superior to them in all objectives. In other words,
the non-dominated solutions are those solutions
that cannot be improved in all objectives simul-
taneously. There have been a number of litera-
tures associated with multi-objective optimiza-
tion using evolutionary computing and genetic
algorithms such as vector evaluated genetic algo-
rithm (Schaffer, 1985), multiobjective genetic al-
gorithm (Fonseca et al., 1993 ; Horn et al., 1991 ;
Narayanan et al., 1999 ; Obayashi et al., 1997 ; Zitsler
et al.,, 1998), coevolutionary computing (Lohn
et al., 2002 ; Parmee et al., 1999) and immune
network simulation (Yoo et al., 1999a; 1999b),
etc.

The paper discusses the adaptation of coevolu-
tion in the context of GA based multiobjective
optimization. Coevolution is a genetic process by
which several species work with different types of
individuals in parallel. In general, there are vari-
ous interactions in two or more species. These
interactions depend on the influence of a species
relevant to the other. The natural evolution is
simply the adaptation of an individual within a
species to the fixed environment. However, actual,
realistic evolution is the process of the interac-
tions in different species and/or changeable en-
vironment. That is, creatures in a nature coevolve
through various species and environment. Genetic
algorithm is a computational model that mimics
the natural evolution, but is powerful only in li-
mited areas of applications due to its simplicity.
The successfulness of GA depends on what type
of measure of fitness is selected and how much
the fitness function is reflected to a real situa-
tion. Coevolutionary computation (CEC) might
be one of solutions to overcome the limitation
of fitness. In CEC, the fitness of a species is in-
fluence by another evolving species, that is, more
than two species affect their fitness spontaneously
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(Fogel et al., 2003) . Coevolution is classified into
several ways ; one is the competitive coevolution
over different species such as prey and predator,
the other is the cooperative coevolution in which
species evolve through compensation. There is
another coevolution that is related between a host
and a number of parasites.

Multiobjective optimization is a design method
to find the optimum set of design variables that
contribute to all the objective functions, which is
analogous to CEC in a case where individuals of
different species are cooperatively coevolved by
reflecting the fitness of each species. The concept
of CEC has been explored in the preliminary air-
frame design, where ‘constraint range map’ is in-
troduced to locate multiobjective solutions grad-
ually, starting from each of the premature sin-
gle-objective designs (Parmee et al., 1999). Con-
straint range map is a scheduling of how design
solutions of a single objective optimization are
reflected to another during the coevolution pro-
cess of multiobjective optimization. The present
study explores the GA based coevolution, and de-
velops prescribed and adaptive scheduling schemes
in CEC. In the paper, non-dominated Pareto op-
timal solutions are obtained by controlling schedul-
ing schemes and comparing each of single objec-
tive optimal solutions. The proposed strategies
are subsequently applied to a three-bar planar
truss design and an energy preserving flywheel
design.

2. Coevolution

2.1 Proposed strategy

The section discusses the procedure of coevolu-
tion strategies in GA based multiobjective opti-
mization. Suppose for simplicity there are two
constrained objective functions, f1 and f> in the
minimization problem such that:

fz(Xi) <l>

subject to g (x:) <0 g(x;) <0
xlgawer gxilz_tpper xlgower <x; éxlz_tpper

Minimize fi(x;)

At first, define randomly generated initial popula-
tions of P1 and P2 corresponding to f; and fa,



A Method of Genetic Algorithm Based Multiobjective Optimization via Cooperative Coevolution

respectively. The subsequent coevolution process
is explained as follows:

(1) Perform the genetic evolution for P1 and
P2 in parallel. After a generation, each evolved
population is rearranged with the order of fitness.

(2) Select the best individual (i.e., the best de-
sign variable vector, x2¢F2) j=1,--- N, where,
N is the number of design variables) at P2, and
compute the difference between design variable

values as follows :

. ngl)_xlbest(Pz) (2>
i | _upper __, lower
i Xi
where, xV is j-th design variable value in an
individual at P1, and x{°*®" and x¥**°" are lower

and upper bounds on design variable, respective-
ly. Now, consider ‘penalty on difference’ (POD)
as shown in Figure 2. If the value of D; is greater
than POD based on the difference between xv

and xbestP?

, a penalty is added to a correspond-
ing individual’s constrained objective function
value at P1.

(3) Evaluate D, for all design variables in an
individual at PI.

(4) Repeat Step 2) and Step 3) for all indi-
viduals at P1.

(5) Likewise, based on the best individual at
P1, repeat Steps 2) to 4) for all design variables
in all individuals at P2.

(6) Rearrange P1 and P2 in the order of coe-
volved fitness, and remove the fourth quarter of
total individuals from each population. It is also
necessary to exclude such lowest individuals from
the participation into the subsequent genetic evo-
lution. Instead, generate a quarter of individuals
at random.

(7) Using newly constructed population, go
back to Step 1) until GA convergence.

Stepwise process in 2) to 4) is depicted in
Figure 1. There are four different behaviors in
POD scheduling whose initial value is 1.0 (i.e.,
100% in terms of lower and upper bounds on
design variable) at the beginning of the genera-
tion and final value is 0.1 (i.e., 10% difference
between individuals at P1 and P2). It is noted
that POD value is reduced over the generation as

2117
w3
| Eomis the order of [ mom i P
| sl the order of finess ks sy
l ]
presily

—-| o gividsoal 1inF1

| Variazle Linledorifuz) -

| Dempare the besk inciziiual n 72

[

| “alilal: el st

Fig. 1 Evaluation of POD in multiobjective optimi-
zation by GA based coevolution
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Fig. 2 Behaviors of prescribed POD’s

shown in Figure 2. Such POD’s are representa-
tives in terms of nonlinearity and convergence
speed ; sine wave and half sine wave present non-
linearity in their behavior, and half linear and
half sine wave show rapid convergence history.
Since the optimal solution at P1 would not be
obtained at the early stage of genetic evolution,
D; is allowed within a quite large value of POD.
After a considerable number of generations, well-
evolved designs at P1 should be much closer to
the best design at P2 in the context of multiob-
jective design. By introducing D; and POD, the
characteristics of P2 can be reflected into the sin-
gle objective optimization results at P1. In the pro-
posed approach, the comparison between D; and
POD facilitates for P1 to conduct the single-ob-
jective optimization together with the reflection of
the best design at P2. Through the above process,
fully evolved individuals at P1 are consisted of
designs whose objective function values are mini-
mized (or reduced as much as possible), whose
constraints are satisfied, and that are also similar
to the best design at P2.

The condition of D; being less than POD in-
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dicates the degree of how much designs in a cer-
tain population are similar to a design in another.
The coevolution process employs four kinds of
POD’s in Figure 2, wherein the final value of
POD is 0.1 as mentioned before. For example,
the final value of PODyna;=1.0 means that POD
value is the same over the generation and there is
no penalty for all designs in all individuals since
D; is always less than or equal to POD. In this
case, the single objective optimization at P1 is se-
parately conducted without including design char-
acteristics of P2. Compared to a sense of weighted
method in multiobjective optimization, PODjinqa=
1.0 corresponds to the use of weighting factors,
w1=1 and w.=0 when the weighting factor based
multiobjective optimization is formulated as fol-

lows :
Minimize
w1 fl;ﬁ:i> -I—a)zfzo,ii) (where, w1+w,=1) (3)
1 2

subject to g (x;) <0
ngower Sxigxgtpﬂer.

In Eq. (3), £i* are f2* are optimal objective func-
tion value obtained through single objective opti-
mization. Likewise, when PODjing; is 0.1 or smaller,
coevolved designs could reflect the common de-
signs each other, hence PODyunqg=0.1 roughly cor-
responds to @w;=0.5 and @w.=0.5. Now, non-
dominated Pareto optimal solutions would be iden-
tified by changing the final value of POD ranging
from between 0.0 and 1.0.

2.2 Adaptive POD

Aforementioned four different POD’s in Figure
2 are basically a method of prescribed schedul-
ing to account for inter-relations between P1 and
P2. However, the POD value is different depend-
ing on design problems therefore it should be
adaptively altered according to the result of coe-
volution process over the generation. In the adap-
tive scheduling, the current value of POD is de-
termined based on how many designs or indi-
viduals are satisfied with the previous value of
POD. The present study introduces a new scheme
of ‘adaptive penalty on difference’ (APOD) as
follows :
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NIND(Q—I) :|

(@) — (g—1) _
APOD9=APOD' [1 F P

where, NIND is the number of individuals that
satisfy the previous value of APOD. NPOP is
the number of individuals in a population, and ¢
denotes a generation counter. A relaxation para-
meter, & ranging from 0.1 to 1.0 is used to control
APOD value as well. This parameter reflects the
change in APOD. Eq.(4) enables the current
value of APOD to be tighter in a case where the
number of individuals that satisfy the previous
value of APOD is increased, thus the speed-up
of coevolution process would be available. In
the use of APOD, Pareto optimal solutions are
obtained by terminating the coevolution process
when such APOD is reached at a specified value,
e.g., 0.9, 0.8 or 0.1.

3. Design Problems

3.1 Three-bar truss

The design objective is to determine the opti-
mal cross sectional areas, A; and A, by mini-
mizing both the total weight (W) of a statically
loaded three-bar planar truss and its tip deflec-
tion (§) subjected to stress constraint on each
truss member. The schematic is shown in Figure
3 and the mathematical statement of this optimi-
zation problem (Haftka et al., 1993) is written as

follows :
Minimize W (A, A2 & §(A1 As) (5)
subject to Al Ay) < g¥PPer=70 (6)

0‘1(

02 (A1, Ag) < g™PPe" =20
03( Ay, Az) <o%"=—15
0.1<A;,A:<5.0

P’
Fig. 3 Three-bar planar truss



A Method of Genetic Algorithm Based Multiobjective Optimization via Cooperative Coevolution 2119

ro—U5m

(e 42142 1
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Table 1 Problem parameters in flywheel design

tions are obtained when the overall difference be-
tween design variables for two objective functions
is less than 0.1. As mentioned before, this cor-
responds to a case where a weighting factor is

wEht
= = = delheclion
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parameter value
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Poisson ratio, v 0.3
B
Material density, o 7830 kg/m?®
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3.2 Flywheel

For a flywheel design as shown in Figure 4,
the objective is to determine radius and thick-
ness variables by maximizing the kinetic energy
(KE) and minimizing the disk weight (W) sub-
jected to weight and yield stresses. The optimi-
zation problem (Mistree et al., 1994) is stated as
follows :

L. 1
Minimize —=—F & W, n,7h) (7
KE (1,73, 73, 1) (77 8) (7)
subject to  or <0y (8)
0r<0y

h<fh & 0.01<£4=<0.1

0.05< 1, 79, 73<0.5 (unit: m).

In the above problem, or and or are denoted as
radial and tangential stresses, respectively, and
are limited by the yield stress, oy. Problem para-
meters including material properties are summa-
rized in Table 1.

4. Results and Discussion

Coevolution based multiobjective optimization
is conducted using prescribed scheduling schemes
in Figure 2. Typical results are shown in Figures
5 and 6, wherein optimized cross sectional areas
of three-bar truss are presented. Since POD val-
ues are reduced to 0.1 in this case, optimal solu-
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Fig. 5 Three-bar truss results by sine wave type
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Fig. 6 Three-bar truss results by half sine wave type
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0.5 used in the context of weighted method. It
is detected that solution histories in Figure 5 is
more fluctuating than those in Figure 6. The fas-
ter scheduling with half sine wave type is shown
to be more efficient in this optimization prob-
lem. For the verification of adaptive POD scheme
is explored to see how such approach affect the
design results. Based on Eq. (4), CEC is conduct-
ed in three-bar truss problem as well. The re-
sulted APOD history is shown in Figure 7, and
its corresponding optimized design solutions are
demonstrated in Figure 8. It is noted that the
resulted APOD behavior is more similar to half
sine wave rather than sine wave so that solution
histories in Figure § are also similar to those in
Figure 6. APOD would be noticeable when a
careful selection of prescribed scheduling in POD
is not available. Coevolution results with other
scheduling schemes are summarized in terms of
optimized design solutions and NCALL, the
number of function calls as shown in Table 2.
APOD is a compromise between sine wave type
POD and half sine wave type POD in terms of
NCALL.
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Above results are obtained by assigning PODjina=
0.1. Now, it is necessary to identify Pareto opti-
mal solution by controlling the final value of POD.
Multiobjective Pareto solutions in the present
study can be produced by changing PODyinq; ranging
from 0.1 to 0.9. It is reminded that PODjna=
0.1 is a process for commonly compromising be-
tween two objective function values while PODyinq=
0.9 induces more consideration of single objective
function values. Pareto solutions obtained from
the present approaches and a traditional weight-
ed method by Eq.(3) are shown in Figure 9,

——weight
5| ———deflaction
" ——aquoerage

[

17 13 1% 25 31 37 43 48 55 61 67 73 79 B 91 97
generalion

(a) Al

@

1.2
0.8
% 0.8
0.4 ——walight
1 ) ——~—detlection
0.2 == L
—— ) ,
" 1 7 12 19 256 81 37 43 49 55 61 67 73 79 85 91 &7
T I e A RRTSER 8T SS 8 veneration
aee-ation (b) A2
Fig. 7 Resulted APOD with £=0.5 in three-bar Fig. 8 Three-bar truss results by APOD with
truss design k=0.5
Table 2 Three-bar truss design results
POD A As F (W) F (0) NCALL
Linear ramp 0.7100 3.3800 4.9685 3.3878 6240
Sine wave 0.7100 3.3800 4.9685 3.3878 6060
Half linear ramp 0.7100 3.3800 4.9685 3.3878 4660
Half sine wave 0.7100 3.3800 4.9685 3.3878 4620
APOD (k=0.5) 0.7900 3.3455 5.5427 3.3820 4740

NCALL : the total number of function calls
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Fig. 10 Pareto-optimal solutions in flywheel design

PODyina 71 72 73 t weight 1/KE KFE
0.1 0.06 0.319 0.341 0.05 444.63 7.899E —09 1.266E +08
0.2 0.125 0.283 0.298 0.051 425.774 8.665E—09 1.154E+08
0.3 0.182 0.364 0.375 0.052 379.953 9.830E—09 1.017E+08
0.4 0.182 0.271 0.273 0.053 339.632 1.155E—08 8.658E+07
0.5 0.249 0.266 0.268 0.05 322.884 1.218E—08 8.212E+07
0.6 0.249 0.266 0.268 0.05 322.884 1.218E—08 8.212E+07
0.7 0.059 0.346 0.348 0.05 315.948 1.233E—08 8.112E+07
0.8 0.118 0.212 0.213 0.05 313.734 1.257E—08 7.954E+07
0.9 0.183 0.353 0.354 0.05 310.636 1.266E —08 7.897E+07

(b) 1/KE optimization by coevolution

POD ina " 72 73 h weight 1/KE KE
0.1 0.093 0.311 0.334 0.05 458.6 7.694E —09 1.300E+13
0.2 0.091 0.295 0.332 0.055 593.9129 5.811E—09 1.721E+08
0.3 0.092 0.301 0.345 0.055 632.743 5.362E—09 1.865E +08
0.4 0.063 0.306 0.354 0.05 615.85 5.372E—09 1.862E +08
0.5 0.051 0.281 0.33 0.051 660.04 5.091E—09 1.964E +08
0.6 0.145 0.266 0.31 0.058 703.906 5.029E—09 1.988E +08
0.7 0.152 0.256 0.303 0.055 721.941 4917E—09 2.034E+08
0.8 0.189 0.21 0.264 0.051 822.117 4.497E—09 2.224E+08
0.9 0.19 0.196 0.25 0.051 837.365 4.466E —09 2.239E+08

(c) weight method

o n 7 73 t weight 1I/KE KE
0 0.19 0.196 0.25 0.051 837.365 4.466E —09 2.239E+08
0.1 0.054 0.182 0.237 0.05 814.359 4.450E—09 2.247E+08
0.2 0.064 0.296 0.35 0.051 672.860 4.910E—09 2.037E+08
0.3 0.052 0.295 0.35 0.05 672.747 4.888E—09 2.046E +08
0.4 0.086 0.327 0.381 0.05 621.872 5.226E—09 1.913E+08
0.5 0.056 0.327 0.364 0.05 525.356 6.362E—09 1.572E+08
0.6 0.054 0.335 0.359 0.05 445.138 7.784E—09 1.285E+08
0.7 0.085 0.363 0.376 0.05 371.980 9.770E —09 1.024E +08
0.8 0.241 0.346 0.346 0.05 304.408 1.301E—08 7.686E+07
0.9 0.201 0.345 0.345 0.05 304.408 1.301E—08 7.686E+07
1 0.167 0.346 0.346 0.05 304.408 1.301E—08 7.686E+07
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wherein there demonstrates the good agreement
among each of design methods. Another design
problem of a rotating disk in flywheel is explored
to generated Pareto optimal solutions as well. In
the coevolution strategy, a sine wave type POD is
selected because it shows a marginal performance
in the three-bar truss problem. Results from coe-
volution and a weighted method are presented in
Figure 10, and their numerical data is summa-
rized in Table 3. These also show similar trends
to a three-bar truss problem.

5. Closing Remarks

The concept of cooperative coevolution is em-
ployed in the context of GA based multiobjec-
tive optimization. Coevolutionary optimization is
a parallel process to obtain optimized design solu-
tions by reflecting others’ environments. In the
present study, two approaches of scheduling schemes
for considering such reflection are implemented.
Premature solutions get more compromise as the
genetic coevolution is in progress. There shows a
good agreement between proposed strategies and
a traditional weighed method in multiobjective
optimization. For further study, both competitive
coevolution and host-parasites methods are being
considered to enhance the design performance in
the context of multiobjective optimization using
GA based CEC.
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